METHYLCYCLOPROPANE-HALOGEN REACTION: FACILE HOMOALLYLIC FUNCTIONALIZATION IN LONGIFOLENE/CAMPHENE VIA LONGICYCLENE/CYCLENE^{1,2}

Shivaji N. Suryawanshi and U. Ramdas Nayak^{*} National Chemical Laboratory, Poona (India)

IN CONTINUATION of our studies on the electrophilic reactions³ of the methylcyclopropane moiety in isoprenoid substrates-longicyclene $\underline{1}$ / cyclene $\underline{2}$, we have investigated the reaction with halogens (Br₂, ICl) in an attempt to achieve facile homoallylic functionalization in longifolene $\underline{3}$ / camphene $\underline{4}$. The generation of some otherwise inaccessible and synthetically-useful⁴ halides

based on the ectocyclic olefins $3 \neq 4$ is described in this communication.

The product outcome of the bromine-longicyclene reaction was dictated by the solvent used. In <u>ether</u>, there was hardly any homoallylic bromination (< 10%) and (E)- ω -bromolongifolene 5 ^{3a} was the major product (75%). On the other hand, formation of the homoallylic/vinylic bromination product - 9-bromo- ω -bromolongifolene 7 ^{3a} in 35% ⁵ yield with equimolar amount of the reagent in <u>pyridine</u> was rendered near quantitative (97%) when two moles of bromine was used.

Although ICl failed to react with longicyclene <u>1</u> in pyridine, the ICl-C₅H₅N complex (m.p. 136[°]) in <u>AcOH</u> effectively transformed <u>1</u> into 9-iodolongifolene <u>8</u> $(73\%)^6$: C₁₅H₂₃I (M⁺ 330); PMR(CCl₄): 1.03, 0.93, 0.93 ppm (tertiary Me singlets); 3.68, 3.77 ppm (1H, dd, J = 9 Hz, -CH.C<u>H</u>I.CH₂-); 4.70, 4.98 ppm (1H singlets, <u>exo-methylene</u>). IR(smear): 1650, 895 cm⁻¹.

Chromatographic resolution (silica gel/IIa) of the bromination product

4429

of cyclene 2 in pyridine yielded the homoallylic/vinylic dibromo compound 9 3a

in major amount (61%). The minor compound was characterized as the tribromo compound <u>10</u> (m.p. 100°, 32%; precursor for <u>9</u>): $C_{10}H_{15}Br_3$ (M⁺ - HBr 290, 292); PMR(CCl₄): 1.05, 1.42 ppm (tertiary Me singlets); 3.80 ppm (2H, q, J = 12 Hz, -CH₂Br); 4.12, 4.20 ppm (1H, dd, J = 7 Hz, -CH.CHBr.CH₂-).

1Cl-pyridine complex in AcOH transformed cyclene 2 into a mixture of products from which the homoallylic iodo compound <u>11</u> was isolated (silica gel/ IIa) in a reduced yield $(42\%)^6$ as compared to the related sesquiterpene case 8. <u>Compound 11</u>: $C_{10}H_{15}I$ (M⁺ 262); PMR (CCl₄): 1.02, 1.07 ppm (tertiary Me singlets); 3.73, 3.80 ppm (1H, dd, J = 8 Hz, -CH.CHI.CH₂-); 4.67, 4.93 ppm (1H singlets, =CH₂). IR(smear): 1650, 895 cm⁻¹.

The sterecelectronically-controlled mode of cleavage of cyclopropane in longicyclene <u>1</u> by strongly electrophilic halogen (pyridine perbromide/IC1pyridine complex) generates almost exclusively the longifolene skeleton functionalized at C-9; with bromine as reagent further reaction also invariably takes place to furnish the homoallylic/vinylic dibromo compound <u>7</u>.

Satisfactory elemental analyses were obtained for the compounds described above.

REFERENCES AND NOTES

1 Communication No. 2005; , National Chemical Laboratory, Poona.

- 2 Newer Aspects of Longifolene-XII.
- a) S.N.Suryawanshi and U.R.Nayak, <u>Tetrahedron Letters</u> 3595 (1977).
 b) S.N.Suryawanshi and U.R.Nayak, <u>Tetrahedron Letters</u> 2619 (1977).
 c) S.N.Suryawanshi and U.R.Nayak, <u>Tetrahedron Letters</u> 465 (1978).

4 The synthetic potential of compds.7 and 8 will be described subsequently.

- 5 10-15% of the monobromide <u>6</u> was also formed; the hydrocarbon was identified as essentially unchanged longicyclene.
- 6 The balance consisted of a mixture of two acetates.

(Received in UK 2 August 1978)